

AntiviruXSS
How We XSSed 8/9 Top AV Vendors

by

Strukt @strukt93
Brute @brutelogic

Table Of Contents

1.Introduction
2.Rating Criteria
3.AntiviruXSS
4.Vendor Responses

1. Introduction

1.1 A few words

Antivirus software (abbreviated as AV) has been very frequently
used by millions of people worldwide in the past decade. Their
main job was to identify and remove viruses from the computer
they are running on.

Over the years, the work of AVs has extended to more than just
catching and removing viruses from computers. Modern AVs are
designed to protect from more types of attacks such as adware,
ransomware, spyware, trojan horses, backdoors, worms and
rootkits.

While AV softwares are doing quite a good job protecting from the
previously mentioned types of attacks, their vendors seem to
forget or ignore the protection of their own web applications from
the simplest of attacks.

1.2 What is this paper about

This paper is about how the authors attempted and succeeded to
find Cross-Site Scripting flaws in the web applications of almost all
the top AV software vendors (8 out of 9).

Cross-Site Scripting (XSS) is a type of client-side attacks where the
attacker takes control over the victim’s browser via the injection of
malicious code (usually javascript).

This type of attacks allows the attackers to do a bunch of things
depending on the context of the attack. For example, if the XSS
vulnerability lies in the login page of some website, the attacker
may be able to steal the user credentials once the user enters their
data and presses the “Login” button.

Another example is when the server sends an ill configured
session cookie, where it’s left to be manipulated by client-side
scripts. The attacker then can steal that cookie via an XSS
vulnerability that exists on any page on the web application that
also contains the session cookie.

Cross-Site Scripting also allows attackers to redirect users to
malicious pages on the internet and allows them to force the
browser to download malicious files.

For more information regarding Cross-Site Scripting basics see:
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%
29

For articles regarding XSS attacks see:
http://brutelogic.com.br/blog

2. Rating criteria

The authors of this paper have decided to rate each of the findings
based on its severity and difficulty to find, each of the ratings will
lie on a scale between 1 and 5.

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://brutelogic.com.br/blog

Each of the findings in the AntiviruXSS section will have a rating
similar to the following model:

Severity: ⅖
Difficulty: ⅘

Additionally we have decided to rate each of the vendor’s
responses based on how serious it is, which is determined by how
fast their initial response was and how much they seemed to be
interested in their follow ups. Again, each of those ratings will lie
on a scale between 1 to 5.

Each of the responses in the vendor responses section will have a
rating similar to the following model:

Speed: ⅖
Interest: ⅘

3. AntiviruXSS

This is the main section of the paper, where we explain each of the
findings and the payload(s) used to trigger an alert box as a
Proof-of-Concept (PoC) for each of them. We will list the findings
sorted by difficulty.

3.1 BitDefender

Affected Subdomain: lv2.bitdefender.com

The subdomain mentioned above was susceptible to XSS because
of the 404 error page on the server. It did not sanitize the path
name from the URL thus adding a simple XSS vector like
<script>alert(document.domain)</script> was enough to trigger an
alert.

Rating
Severity: ⅖
Difficulty: ⅕

This XSS scored ⅖ in severity as the subdomain has the same
cookies the main subdomain www.bitdefender.com had thus the
same level of threat if the XSS was on the main subdomain. It
scored ⅕ in difficulty as there was no protection at all against XSS.

Final Payload:

https://lv2.bitdefender.com/<script>alert(document.domain)</scri
pt>

3.2 Kaspersky

Affected Subdomain: kids.kaspersky.com

The above subdomain was vulnerable to XSS through a GET
parameter called ‘age’, which is supposed to hold the kid’s age.
The parameter had absolutely no protection against XSS and
allowed simple vectors like “><svg/onload=alert(domain)> to
execute an alert on the subdomain.

Rating
Severity: ⅖
Difficulty: ⅕

Just like BitDefender’s this XSS scores ⅖ in severity because the
subdomain has the same cookies that www.kaspersky.com does.

It also scores ⅕ in difficulty because there’s no protection against
XSS attacks.

Final Payload:
https://kids.kaspersky.com/?age="><svg/onload=alert(domain)>

3.3 Panda Security

Affected Subdomain: download.pandasecurity.com

The above subdomain was vulnerable to XSS via the GET
parameter “url”, which was lying at
http://download.pandasecurity.com/cav/eng/malicious/

This parameter’s value appeared 3 times in the source of the page,
once in a script context where it was held between two double
quotation marks and twice between <h1> tags.

The parameter’s value was not escaped or encoded by any means
and so we had two options to exploit this vulnerability.

Our first option was to directly inject a payload with an HTML tag
like <svg onload=alert(domain)>. The other option was to break out
of the string value of the parameter and “subtract” the alert
function from it using “-alert(document.domain)-”. We chose the

second option because it is shorter and works on all major
browsers including Mozilla FireFox, Google Chrome, Internet
Explorer and Safari as seen in the screenshots below.

Rating
Severity: ⅗
Difficulty: ⅖

This XSS scored ⅗ in our opinion due to the same circumstances
like the two previous examples but in this case none of the cookies
were of HttpOnly type. It means that all the cookies can be stolen
by client-side scripts thus a bigger risk.

This XSS also scored ⅖ on our difficulty scale because even though
there was no protection against XSS, calling the subdomain
download.pandasecurity.com without specifying the path to the
vulnerable page results in a 403 (Forbidden) error and some more
research had to be done first to find the vulnerable one.

Final Payload:
http://download.pandasecurity.com/cav/eng/malicious/?url="-aler
t(document.domain)-"

3.4 Avira

Affected Subdomain: search.avira.com

This subdomain was vulnerable to XSS via a GET parameter called
“gct” which value appeared 6 times in the source of the page, one
of them without any escaping or encoding in a script context while
in the five other cases it was very well sanitized.

Again we had to make the same choice between the two
approaches to XSS this subdomain and of course again we chose
the shorter and universal solution. Screenshots:

Rating
Severity: ⅗
Difficulty: ⅗

This XSS scored ⅗ in severity because it’s typically the same case
as Panda Security, all the cookies are accessible by client-side
scripts including the PHPSESSID which is the PHP session cookie.

It also scored ⅗ in difficulty because it took us some time to find
the vulnerable parameter as opposed to Panda Security’s case,
where the vulnerable parameter was easily caught but the path to
the vulnerable page was the one that took time to be found.

Final Payload:
http://search.avira.com/?gct='-alert(document.domain)-'

3.5 AVG

Affected Subdomain: toolbar.avg.com

The subdomain above was actually different compared to the 4
previous examples. The web application was running on
Microsoft’s ASP.NET which default anti-XSS filter detects the XSS
attempt if the “<” character is followed by an alphabetical one (A-Z
and a-z).

The web application was vulnerable to XSS through two GET
parameters named “op” and “pid” whose values were set as the

value of “class” parameters of two <div> tags in the source of the
page. We XSSed the page using the “onmouseenter” event handler
with details after the screenshot.

Rating
Severity: ⅖
Difficulty: ⅘

This XSS scored ⅖ in severity as the most important cookies were
protected by the HttpOnly option which keeps it from being stolen
by client-side scripts.

As in difficulty, this one deserves to score a ⅘ on our scale because
of the following reasons. First, the path to the affected page was
not that obvious and needed some time and search to be found.
Second and more important, the use of ASP.NET as a back-end

service made it harder to XSS the page because of its native
(although limited) anti-XSS filter.

This being said, we had only one option which is to break out of the
“class” attribute but not the <div> tag and then use a JS event
handler to execute the XSS on the page. We then tried using the
“onmouseover” event handler, but unfortunately we couldn’t
because there was some WAF that blocked it.

We tried another mouse event handler, which is “onmouseenter”,
and it worked like a charm. All set, only using the alert() function is
left to XSS this page. Unfortunately this wasn’t actually the case
because an WAF (Web Application Firewall) in place also blocked
the use of the left parentheses “(“. This was quite easy to bypass
by using it’s HTML encoded counterpart, which is (.

Final Payloads:
http://toolbar.avg.com/almost-done?op="onmouseenter="alert%26
lpar;document.domain)

http://toolbar.avg.com/almost-done?pid="onmouseenter="alert%2
6lpar;document.domain)

3.6 Symantec

Affected Subdomain: library.symantec.com

The above subdomain was actually different from all the other
cases because this XSS was a stored one. Symantec didn’t build

the code running on that subdomain, they were using a platform
that was developed by another company called “Getty Images”.
The stored XSS was affecting an aspect of the web application
called “Lightboxes” where users can create their own lightboxes
and share them with other users.

The vulnerability lied in the lightbox name: it appeared in a script
context with no sanitization at all, leaving the web application
vulnerable to a very devastating type of XSS attacks.

We were again to choose from two exploitation methods, choosing
the shorter which works in all major browsers.

Rating
Severity: ​5/5

Difficulty: ⅘

This XSS scored ​5/5​ ​on the severity scale and this was decided
upon three factors. The first is that the XSS is a stored one which
can affect lots of people and may be used to create a worm. The
second is that none of the cookies, including the session cookie
itself, were protected hence likely to be stolen by client-side
scripts.

Finally, the CSRF token was actually stored in a variable inside a
<script> tag in the source code. All that being said, the attacker can
absolutely take over the account of any user once they share a
maliciously named lightbox to them and they accept it.

The XSS also scored ⅘ on the difficulty scale because the
subdomain wasn’t so easily found. We also had to create accounts
to find the vulnerability and make sure it wasn’t a self-XSS. Also we
had to test every stored user input in order to find that XSS.

Final Payload:
In this case there’s no absolute URL to be followed for the XSS to
trigger, the payload for the XSS was "-alert(document.domain)-".

3.7 McAfee

Affected Subdomains: service.mcafee.com att.mcafee.com
verizon.mcafee.com truekey.mcafee.com

The above 4 subdomains were affected by the same XSS
vulnerability as they used the same code. The GET parameter
“term” was the one affected, its value appeared 4 times in the
source of the page, being 3 times correctly encoded and once with
single quote stripped (because the parameter value was held
between single quotes).

In this XSS a very unique and smart payload was used that will be
discussed right after the screenshots.

Rating
Severity: ⅖
Difficulty: ​5/5

This XSS scored a ⅖ on our severity scale because the cookies
were very well protected so the attacker doesn’t actually have
much options to attack the user’s session. On the other hand, this
XSS was pretty difficult to exploit due to a number of hardships
faced while trying to trigger alert(document.domain).

The first problem we faced here was that a single quote was
removed from the payload which denied us from using simple,
short and universal payloads such as '-alert(document.domain)-'.

This leaves us with the other option which is breaking out of the
script context and injecting our own HTML tag with its event
handler and this way we have solved our first challenge.

The second problem was that even though we can now inject our
own HTML tag, we can’t use alert(document.domain) because the
left parenthesis “(” was blocked. We could use grave accents (`) to
trigger an alert but grave accents print what’s written inside them
as a literal string so “document.domain” will be shown as
“document.domain” and not “subdomain.mcafee.com”. *

We tried (in place of left parenthesis but the page still throws
500 (Internal Server Error) thus even HTML encoding couldn’t save
the day this time. We decided to use the hash sign (#) which
allows us to add additional text that is not parsed by the
server-side code at all, only by the client-side scripts via the
location.hash document property.

Now comes the time of ​location based payloads​, which use the
document.location properties to change the URL to something that
starts with the “javascript:” pseudo protocol which executes any JS
code that is inserted beyond the colon.

Unfortunately we were not able to use use something like
</script><svg/onload=location=”javascript:alert”+location.hash>#(
document.domain) because location.hash will not return only
“(document.domain)” but “#(document.domain)”. We couldn’t use
the substr() or slice() functions because they still use parenthesis.

http://brutelogic.com.br/blog/location-based-payloads-part-i/

To circumvent this, we used the innerHTML property of HTML
elements which returns the text contained between the opening
and closing tags of the current element. It made possible to create
a payload like the following:

</script><svg/onload=location=”javascript:”+innerHTML+location.
hash>”#”-alert(document.domain).

The payload above changes the document.location of the page to
javascript:”#”-alert(document.domain) which by concatenating the
sign as a string (between “”) to the alert() function triggers the
alert box.

Final Payloads:
https://service.mcafee.com/webcenter/portal/cp/home/faq?term
=</script><svg/id=javascript:+onload=location=id%2binnerHTML%
2blocation.hash>"&mode=search#"-alert(document.domain)

https://att.mcafee.com/webcenter/portal/cp/home/faq?term=</s
cript><svg/id=javascript:+onload=location=id%2binnerHTML%2blo
cation.hash>"&mode=search#"-alert(document.domain)

https://verizon.mcafee.com/webcenter/portal/cp/home/faq?term
=</script><svg/id=javascript:+onload=location=id%2binnerHTML%
2blocation.hash>"&mode=search#"-alert(document.domain)

https://truekey.mcafee.com/webcenter/portal/cp/home/faq?term
=</script><svg/id=javascript:+onload=location=id%2binnerHTML%
2blocation.hash>"&mode=search#"-alert(document.domain)

* We later learned ​this​.

3.8 ESET

Affected Subdomains: www.eset.com

The above subdomain was vulnerable to XSS via GET parameter
“q” which is the search engine’s way to introduce search terms to
the back-end code. The CMS software used on the website,
vulnerable to the XSS, was not developed by ESET but by a
company called “TYPO3”.

Rating
Severity: ⅕
Difficulty: ​5/5

https://blog.asdizzle.com/index.php/2016/04/02/xss-with-template-strings/

This XSS scored a ⅕ on the severity scale as the cookies were
protected just like in McAfee’s case but requires user interaction to
trigger.

It scored a ​5/5​ on the difficulty scale because we spent a long time
researching all the other subdomains first for XSS then starting to
fingerprint this subdomain for any clues on what software it uses
and whether they’re vulnerable to XSS or not.

We discovered that the subdomain uses TYPO3’s CMS (as stated
earlier) so we started looking for any clues on how the CMS’s filter
works. After some time we discovered a page on GitHub that
contains the CMS’s unit tests and understood how it works exactly.

The CMS uses a blacklist to make event handlers fail so an event
handler like “onclick” is turned to “on<x>click”. It also turned the
“javascript:” pseudo protocol into “ja<x>vascript\:”.Additionaly, “>”
and “<” are HTML encoded. We tried using “javascript:”
instead of “javascript:” and it worked. We could also bypass the
restriction of using “(” and “)” by using (and) instead.

The input reflects only twice in the page source, once between
 tags and the other in the “value” attribute of an <input>
HTML tag. With the HTML encoding of the angle brackets by the
application, we were only left with the option of trying to inject
event handlers or attributes in the <input> tag.

Luckily, HTML5 introduced a new attribute that can be used with
the <input> tags called “formaction”. It allows us to set the “action”

attribute’s value of the <form> that the <input> is part of, and it
even overrides the value of the “action” parameters if it’s already
set.

Using the mentioned attribute in conjunction with the “type”
attribute, we could now turn the <input> tag into a button that when
clicked, sets the location of the document to
“javascript:alert(document.domain)”.

Final Payload:
https://www.eset.com/us/search/?q=1"type=image
formaction=javascript%26colon;%26lpar;document.domain%26rpa
r;+1

4. Vendor Responses

In this section we rate the responses of the AV vendors about the
bugs in their web applications. The list is sorted in the same way it
was sorted in the last chapter.

All vendors were sent an initial message on the 27th of January
2016 and we gave each of them at least 90 days to acknowledge
and fix the bugs before release this paper.

4.1 BitDefender

BitDefender were sent the initial message, a message on the 31st
of January and a message on the 1st of March. They only replied
after the third message asking for more information on the issue,

when we actually discovered that it was already fixed by them
without any reply to our earlier messages.

They then replied on the 21st of April stating that the issue was a
duplicate and was fixed after we initially reported it thus not
eligible for a bounty.

Rating
Speed: ⅕
Interest: ⅕

4.2 Kaspersky

Kaspersky replied to our initial message 27 minutes after it was
sent, being the fastest one to reply.

The bug was acknowledged on the 4th of February, we checked on
the 22nd of February and the bug was already fixed (yet we have
no idea if it was fixed earlier).

A message was sent to Kaspersky again on that day and they said
that they are waiting for a message from their security team. No
messages were sent to us again until the release of this paper.

Rating
Speed: ​5/5

Interest: ⅘

4.3 Panda Security

Panda Security was sent another message after the initial one: it
was on the 31st of January and they replied, acknowledged and
fixed the bug on the 1st of February, being the most interested
company on our scale.

Rating
Speed: ⅘
Interest: ​5/5

4.4 Avira

Avira was sent a message after the initial one then contacted
through their Twitter account, when they replied and supplied us
with an email to contact and finally seemed to care about their
user’s security on the internet.

We sent a PoC of the issue on the 2nd of February to the contact
they provided then we sent three messages on the 8th, 20th, and
27th of February with no reply to any of them until the publication
of this paper.

We found out on the 21st of April that the bug was fixed (possibly
earlier than that) without even showing any type of appreciation
and not even replying to our messages.

Rating
Speed: ⅕
Interest: ⅕

4.5 AVG

AVG replied to our initial message two days later and the bug was
fixed 10 days after their response.

They also awarded us a t-shirt and a certificate of appreciation.

Rating
Speed: ⅘
Interest: ⅘

4.6 Symantec

Symantec replied after our second message, which was sent on
the 31st of January and we sent a PoC on the 2nd of February.

They didn’t acknowledge the vulnerability until they replied after
three messages were sent on the 8th, 22nd and 27th of February,
stating that they have contacted the vendor of the platform and are
waiting for a fix.

The bug was not fixed until the release of this paper.

Rating
Speed: ⅕
Interest: ⅕

4.7 McAfee

We tried to contact McAfee through multiple ways: we tried their
contact form, their support center and their Twitter account. They
finally replied and a PoC was sent on the 4th of February.

The bug was still not fixed until the release of this paper.

Rating
Speed: ⅕
Interest: ⅕

4.8 ESET

ESET replied only 47 minutes after we sent the initial messages,
making them the second fastest company to reply.

The bug was already fixed before the PoC was sent on the same
day at 9:57pm but we sent a screenshot of the alert box (the same
attached to this paper) and they acknowledged our finding.

ESET sent us a formal acknowledgment for our effort.

Rating
Speed: ​5/5

Interest: ​5/5

4.9 Avast

Being the only one out of 9 AV vendors, Avast was not contacted
by any means because we were not able to find a XSS. This
doesn’t mean that it has no such vulnerabilities but only that it
wasn’t easy for us finding them in the timeframe of this work
(about 1 week). Maybe an indicative of the strength of their web
security when compared to its competitors, we leave here our
congratulations to their team.

#hack2learn

